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Supercooling of surface modified liquids
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We present a simple model of surface modified first-order phase transitions, based on the density-functional
theory of freezing. Motivated by recent experiments of surface induced freezing, we show how supercooling
may in fact be inhibited below a certain temperature which depends on the lattice mismatch between the
monolayer and the nucleated crystal, as well as on the macroscopic strength of the surface treatment. We also
apply the model to systems which tend to surface-freeze above the melting point, and correlate their surface-

freezing and supercooling temperatures.
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Systems which undergo first-order phase transitions often
remain in metastable states for long times before reaching
their equilibrium stable phase. Nucleation of the stable phase
can be accelerated by the presence of perturbations, such as
random defects or impurities, which reduce the free-energy
barrier between metastable and equilibrium phases. While
the mechanism of bulk nucleation (homogeneous and hetero-
geneous) has been extensively [1,2] studied, the phenomenon
of controlled nucleation, initiated by surface modifications,
has only recently [3] been demonstrated. In a series of ex-
periments it was shown that crystallization of ice can be
induced by monolayers of amphiphilic long-chain alcohols,
C,H,,+10H, on the surface of supercooled water drops.
These molecules self-aggregate in a two-dimensional crystal
structure [4] which closely matches the attached face of the
to-be-nucleated lattice, hence leading to ice nucleation. By
changing the chain length, n, the measured freezing tempera-
ture was varied from —20 °C to. nearly 0 °C. The chain
length is correlated with various properties of the
monolayer—the misfit between the lattices, the strength (i.e.,
crystallinity) of the monolayer, and its coherence length. Un-
derstanding the effects of these properties on the stability of
supercooled liquids is of both theoretical and practical inter-
est, with applications such as cloud seeding (where ice for-
mation is induced by surface additives) and fuel stabilization
(where wax formation can be prevented by such additives).

As a first step in analyzing the problem, Refs. [5,6] used a
generic, Ginzburg-Landau model for a first-order phase tran-
sition to study the effects of an ordered surface on the sta-
bility of metastable bulk. The minimal supercooling tempera-
ture was calculated as a function of the surface order
parameter and a characteristic domain size. In this model, a
scalar order parameter represents the “crystallinity” of the
system, and the possibility of imperfect lattice matching be-
tween the monolayer and the solid is not treated. In fact, the
mismatch is an important parameter which is varied system-
atically in water-alcohol experiments, and is expected to play
an important role in surface nucleation. The work we present
here accounts for lattice mismatch effects by allowing devia-
tions from the ideal crystal structure. The supercooling tem-
perature is found to vary as the square of the mismatch—a
prediction that can be tested experimentally.

Our approach is based on the density-functional theory of
freezing, originally formulated [7] by Ramakrishnan and
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Yussouff, that relates the density to a set of order para-
meters (OP’s), corresponding to the known crystalline struc-
ture of the solid phase. The free energy is expressed as a
functional of the density; the solid is treated as a perturbation
of the homogeneous fluid. The microscopic properties
enter via the direct correlation function, c¢(r), whose Fourier
transform is related [14] to the structure factor by pyc(q)
=1-[1/S(q)], where pq is the liquid density. The theory
was generalized, by Haymet and Oxtoby [8], to include spa-
tially varying order parameters, enabling calculations such as
the critical size of a crystal nucleus [9] and crystal nucleation
rate [10]. Multicomponent OP’s have also been used [11,12]
in fields such as surface melting and liquid films, but here we
extend the application of density-functional theory to surface
induced freezing. Rather than assuming perfect lattice
matching and using scalar order parameters which represent
only the amplitude of the density waves, we introduce com-
plex OP’s whose phases represent small deviations from the
crystal periodicity. In this manner, the effects of misfitting
surface modification on the supercooled bulk can be studied.
We also use our theory to predict correlations between sur-
face freezing and the inhibition of supercooling which has
application to recent experiments [13] in alkanes.

The density of the system is expanded in terms of the
lattice symmetry of the solid:

p(r)=po| 1+ (") + X pe(Pexp(iG-r)|, (1)
G

where 7 is the fractional density change and {é} are the
reciprocal lattice vectors (RLV’s) of the solid. The coeffi-
cients wg, along with 7, are the OP’s of the theory, which
are assumed to be slowly varying in space, and vanish in the
liquid phase. It is shown in Ref. [8] that the difference in the
thermodynamic potential between a homogeneous liquid and
a nonuniform system (e.g., a solid-liquid interface) is given
by

4 = 1 > 1 Az
An=fdr[ﬂ(n,uc>+5§3<Vn>2+5; félG-VnGIZ}
@

measured in units of k7. G denotes a_unit vector in the
direction of G. The bulk energy density, (7, u¢), depends
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both on the local OP’s, and on the correlation function c(G)
which, in principle, can be measured in the liquid phase. The
other two terms represent energy penalty for spatial varia-
tions of the OP’s, with the coefficients f?; proportional to
¢"(G). The competition between logarithmic-entropy terms
and two-body correlations gives to f), below the melting
temperature, a characteristic ‘“double-well”” structure in OP-
energy space, with one minimum at the origin (metastable
liquid) and another one at finite values of u; and 7 (stable
crystal). Considering a system of liquid plus surface mono-
layer, the total free energy includes, in addition to Eq. (2), a
surface term, f,;, which accounts for the monolayer-liquid
coupling and other surface effects. The various stable and
metastable phases of the system are determined by function-
ally minimizing the total energy with respect to all the order
parameters. One first minimizes AQ) for fixed values of OP’s
on the surface; afterwards the total free energy is minimized
with respect to these surface values. For weak modifications
of the surface, the system can retain its supercooled state by
remaining in a local minimum of the energy, characterized
by OP’s that, although finite at the surface, vanish far into the
bulk. However, we expect that for large enough surface val-
ues of the OP’s, such profiles become unstable and the local
minimum disappears, i.e., supercooling ceases to exist.

In many [7] cases, only one or two sets of RLV’s (which
are related by point-group transformations) are dominant in
the freezing process. Hence we consider only a single set,
{k}, of RLV’s. The corresponding OP’s can be written in a
complex form: ,U«k(;)= wk(;)ei¢k(’), where ¢, is the ampli-
tude of crystallinity and ¢, represents a deviation from the
ideal crystal structure. Following Refs. [8—-10] we assume
that £, is negligible and use a bulk free-energy density, de-
noted by f, which is already minimized with respect to the
local density change 7. The total free energy now has the

form
F=fdr‘[f(uk>+2 }
k

+ fo(ur(0)) €©)

1 . . 1 PR
38k Vi) + 5 E9p(k-Vep)

where f has a typical double-well structure in {u;}. Mini-
mizing F, one obtains two coupled equations for the ampli-
tude and phase of each order parameter:

a PR A >
£+§2¢k<k~V<pk>2—§2(k~V>2wk=o, (4a)
k

20k-Vip) (k-V )+ g (k-V)2p=0. (4b)

Note that Eq. (4b) requires that the function ./;2(12- V@) can

only vary in the plane perpendicular to k.

In what follows, we consider for simplicity a system
whose stable phase is a bee crystal [7,15]. We expect that the
mechanism by which a surface modification destabilizes a
supercooled liquid does not depend on the exact structure of
the to-be-nucleated solid. There are 12 vectors in the domi-
nant set of shortest RLV’s, which, for a surface in the plane
z=0, can be represented by only two OP’s: u and u, for the
directions (X¥+2) and (X+y) correspondingly. The other
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FIG. 1. Minimal supercooling temperature A« vs field &, with
no mismatch (¢ =0), for a=1 (dashed line) and a=0 (solid and
dotted line). The dotted line represents surface metastability. The
inset shows the effective energy density f (with € =0) at the melt-
ing temperature (dotted) and at a=0.9«,, (solid line).

OP’s are related by symmetry. We assume an ideal, infinite
monolayer with small mismatch and strong coupling to the
underlying liquid. In this case the first layer of the liquid is
ordered with a homogeneous periodicity, close [16] to that of
the monolayer, and the amplitudes ¢ and i vary only in the
z direction. Equations (4b) are solved for the phases:
@y=(y3/2)e(x+y) and o= (3/2)e(x—z) (the prefactor is
chosen for convenience), so that Egs. (4a) acquire the simple
form

d

35”+332¢n=0, (5a)
af  d*

W_ F¢=O. (Sb)

The mismatch parameter & represents the fractional change
between the periodicity of the crystal and that of the first

layer, and the coordinates r are scaled by &/ V2. Equation
(5a) is algebraic and yields ¢ as a function of . Substitut-
ing this in Eq. (5b), one easily evaluates the first integral:

1/{o¢\? . 3
E(Oq_f) =f(p=fy)+ Eequﬁ((/,)’ (6)

where f is an effective energy density which is a function of
¢ only (see inset of Fig. 1). The constant of integration is set
to zero since both ¢ and its gradient vanish as z— 0. Mini-
mization of the total free energy with respect to the surface
value of the OP, ¢y=(z=0), leads to the boundary condi-
tion:

oz) oy
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In the supercooling region, Egs. (6) and (7) can be solved
simultaneously, yielding metastable profiles of ¢ which de-
cay away from the surface and vanish at infinity. Below a
certain temperature such solutions cease to exist, presumably
indicating instability of the supercooled liquid and nucleation
of the solid phase.

To demonstrate this instability we approximate the bulk
energy f by a fourth-order polynomial in ¢ and ¢, which
provides a generic model for first-order phase transitions. We
emphasize that by doing this we do not mean that the OP’s
are small; rather, this is just a convenient way to fit the
double well. A similar model (for one OP) was assumed
[17,18] by studies of critical surface phenomena in systems
with first-order bulk transitions, and was also suggested in
Ref. [8] for the liquid-solid interface. We take

3 1
f= S QP2+ QU+, ®)

where the normalization of the third- and forth-order coeffi-
cients is set by a proper scaling of f and ¢. « is a positive
constant which can be linearized in temperature close to the
melting point. This expression takes into account the sym-
metry (of a bee lattice) and shows the expected double-well
structure in OP-energy space: for a smaller than the melting
temperature, a,,= 8/27, the absolute minimum of f is at a
finite value of the OP (¢=¢=1++1—3«a), but there is
another local minimum at ¢=0. Equation (5a) is now ex-
actly solvable, and the inset of Fig. 1 shows the resulting
effective energy, f, at a= a,, and below (for e=0).

The surface coupling energy is taken [17] to have the
form

fo=—hiho+ =R ©)
0 0 2 0

where the first term is the “field” induced by the ordered
monolayer, and the quadratic term represents a tendency of
the bare surface to be disordered (both a and /4 are positive).
In principle, f; also depends on the phase, and the value of
g is determined by minimization of F. However, as a first
approximation we assume that the bulk contribution to this is
small and it is sufficient to minimize f by itself, so that € is
just the mismatch between the monolayer and the lattice.
Combining Egs. (6) and (7), the boundary condition be-

comes h=a o+ \2f(). For a fixed temperature the right
hand side of this equation is maximal at a certain ¢, between
the maximum of f (point m in Fig. 1) and its zero (point z).
This is an upper bound on %, above which there are no
metastable solutions. The argument can be reversed — for a
given value of 4 there is a lower bound on temperature,
below which supercooling is inhibited. In Fig. 1 we plot this
minimal supercooling temperature [in dimensionless units:
Aa=(a—a,)/a,] as a function of the coupling field, #, for
an ideal case of perfect matching (e =0). The onset of insta-
bility is characterized by two limiting cases: When a—0 it
coincides with ¥, maximizing f (point m), i.e., the system
becomes unstable as the bulk energy barrier is crossed by the
Ijrst layer. When a>1 the instability occurs close to
f(¥)=0 (point z). In this case supercooling persists even
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FIG. 2. Minimal supercooling temperature vs lattice mismatch
g, for h=13, a=1 (dashed line); Ah=0.3, a=0 (solid); and
h=0.5 a=1 (dotted). The inset shows the measured freezing tem-
perature vs average mismatch (experimental data taken from Ref.

(6.

beyond the barrier, stabilized by the gradient term in F. The
dotted part of the curve in Fig. 1 represents a region of sur-
face metastability, in which the surface layer may undergo a
first-order transition into a more ordered state [18].

When the monolayer ordering does not match the crystal
structure the instability curves are shifted toward lower tem-
peratures. Figure 2 shows the dependence of the minimal
supercooling temperature on the square of the mismatch pa-
rameter, €, for various choices of the confining potential.
The almost linear dependence is explained by the approxi-
mately equal value of the two order parameters, ¢ and ¢, in
most of the range. Assuming they are equal, the coefficient
of the quadratic term in f becomes a@=a+ (£2/3), so that
the mismatch simply shifts the temperature parameter by
£2/3. It is not entirely straightforward to compare this pre-
diction with the available experimental data, mainly because
of the anisotropic mismatch but also due to a simultaneous
change of other monolayer parameters, such as the coherence
length and crystallinity, along with the mismatch [4]. Never-
theless, the inset of Fig. 2 shows the measured freezing tem-
perature versus the average mismatch (for odd carbon num-
ber alcohol chains).

Our theory also predicts the supercooling behavior of sys-
tems which tend to surface-freeze above their melting point.
An example of current interest [13] is the abrupt formation
of a highly ordered surface layer in n-alkanes prior to bulk
freezing. The temperature difference between surface and
bulk freezing varies with chain length, and disappears for
chains which are either too long or too short. We expect that
the free energy of the surface layer is characterized by a
double-well structure which shows an ordering transition at
higher temperature than the bulk. This energy is modeled by
a fourth-order polynomial in the surface order parameter
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ag is a chain-length dependent parameter which is assumed
to be linear in temperature, and the constants A and s scale
fs and ¢ with respect to the bulk. The bulk energy density
and the coupling energy are given by Egs. (8) and (9),
and the influence of the surface layer is expressed by taking
in Eq. (9): h=cy,, where ¢ is a coupling constant. For
a,<2/9, a>8/27 the surface is ordered, but the bulk free
energy is still minimal for a liquid phase. To find the stable
and metastable configurations of the system one should mini-
mize the total free energy, F + f, with respect to ¢, ,, and
¢, . In practice, we assume that A is large enough so that
Y, can be determined by separate minimization of f; F is
then minimized for a fixed value of ¢y, which is finally
determined by another minimization. Naively one might
think that any surface-freezing would prevent supercooling.
In fact, our calculation shows that it depends on the value of
the surface OP, ;. High surface-freezing temperature is cor-
related with a more ordered monolayer, which suppresses
supercooling more efficiently. This qualitative picture does
not depend on the specific choice of parameters in f; and
fo- In Fig. 3 we plot the minimal supercooling temperature
Aa;, vs the surface freezing temperature Aca,y. Perfect lat-
tice matching (¢=0) is assumed between the surface layer
and the frozen bulk because of their molecular identity. The
dashed line demonstrates how the instability curve is shifted
down when a finite mismatch (£=0.2) is introduced. This
suggests a mechanism for preserving the fluidity of these
systems to lower temperatures, e.g., by the inclusion of sur-
face active contaminants which distort the structural fit be-
tween surface and bulk.
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FIG. 3. Minimal supercooling temperature A, vs surface
freezing temperature A,y in the absence of mismatch (solid line)
and with £=0.2 (dotted line). The parameters used in the coupling
and surface energy are s=0.8,c=0.5,a=0.7.
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